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Delta Air Lines flies over 2,500 domestic flight legs every day,
using about 450 aircraft from 10 different fleets. The fleet as-
signment problem is to match aircraft to flight legs so that seats
are fllled with paying passengers. Recent advances in mathe-
matical programming algorithms and computer hardv^are make
it possible to solve optimization problems of this scope for the
first time. Delta is the first airline to solve to completion one of
the largest and most difficult problems in this industry. Use of
the Coldstart model is expected to save Delta Air Lines $300
million over the next three years.

D elta Air Lines has over 2,500 domes- It has been said that an airline seat is the

tic flight departures every day. This most perishable commodity in the world,

includes flights to Canada and Mexico but Each time an airliner takes off with an

excludes the other international routes. empty seat, a revenue opportunity is lost

Delta has about 450 aircraft available to fly forever. So the schedule must be designed

these flights. The aircraft are divided by to capture as much business as possible,

aircraft type into fleets or groups, of which maximizing revenues with as little direct

Delta has 10. The intricate pattern that the operating cost as possible.

Delta aircraft fly along the route system is An airline combines the worst of both

called the schedule. The schedule is the worlds. The capital intensive quality of a

very heartbeat of an airline. manufacturing environment is combined
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with the low-profit environment of retail
sales. Airlines are capital, fuel, and labor
intensive. Survival and success depend on
the ability to operate flights along the
schedule as efficiently as possible. The
profit-and-loss curve in the airline business
has historically followed the peaks and
valleys of the general economy. In this
dynamic environment, where profits have
historically been low and costs historically
high, how well an airline plans and imple-
ments its schedule can very well determine
its future. A small adjustment in the
schedule may result in millions of dollars
of additional revenue or in millions of dol-
lars of losses. In planning schedules, con-
tinuous refinement is not a luxury; it is a
requirement.

Both the size of the fleet and the number
of different types of aircraft have an expo-
nential impact on schedule planning. Fleets
of different types of aircraft make up the
total Delta fleet. We use the phrase fleeting
the schedule to express assigning a particu-
lar set of aircraft to a particular set of mar-
kets.

The Coldstart project addressed the
problem of fleeting the schedule. The basic
trade-off is that if the airline uses too small
a plane, it will leave potential passengers
behind, while if it uses too large a plane, it
will suffer the greater expense of the larger
plane to transport empty seats. The goal is
to have the right plane in the right place at
the right time, but the many constraints on
the way that planes can actually be oper-
ated make this difficult to accomplish.

The Coldstart model is a large-scale
mixed-integer linear program that assigns
fleet types to flight legs so as to minimize a
combination of operating and passenger

"spill" costs, subject to a variety of opera-
tional constraints, the most important of
which is the number of aircraft available in
each fleet. The model deals with a single
day, which is assumed to be part of a re-
peating cyclic schedule. In practice, there
are exceptions to the daily schedule, partic-
ularly on the weekends. At present, sched-
ulers handle these exceptions manually.
We are currently building an extension of
the Coldstart model to handle the excep-
tions.

Our model assigns fleet types, not indi-
vidual aircraft tail numbers, to the flight
legs. Actual aircraft are routed after the
model is solved to ensure that the solution
is operational. Because of the hub-and-
spoke nature of operations and large fleet
sizes, it is always possible to obtain a feasi-
ble tail routing from the assignment rec-
ommended by the model.

The name Coldstart was inspired by an
earlier schedule-planning tool, known in-
formally as Warmstart, that was used by
Delta Air Lines. Warmstart took a fleeted
schedule that had been produced by the
planners and tried to improve it using local
swap heuristics. It could not, however,
move very far away from its starting point,
and this left the schedulers with most of
the burden of coming up with a good as-
signment manually. The most serious
drawback of the Warmstart system was
that its improvements were so local that a
poor input schedule would result in a poor
output. Coldstart, being an optimization
model, does not require an initial fleeting.

Until very recently, optimizing the fleet
assignment for an airline as large as Delta
would not have been possible. Today,
however, improvements in mathematical
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programming algorithms and computer
hardware make it possible to solve optimi-
zation problems of this scope for the first
time. Delta is the first airline to take ad-
vantage of this new opportunity.
Modeling the Fleet Assignment

The fundamental mathematical structure
upon which the fleet assignment model is
built is a time-space network. This network
has a time line for each aircraft fleet at
each city. This time line is circular and rep-
resents a repeating 24-hour period. Along
a given time line, for example, the one for
757 in Boston, a node represents each
point in time at which at least one event
occurs. An event is the arrival or departure
of a flight. Segments of the time line that
connect these nodes are referred to as
ground arcs. A flight leg is a single hop, that

is, one takeoff and one landing. A flight
leg is represented in the network by a set
of sky arcs, one for each fleet that could be
assigned to fly that leg. For example, as-
signing a 757 to the flight leg that leaves
Atlanta at 6:21 AM and arrives in Boston at
8:45 AM is represented by a sky arc begin-
ning at the 6:21 AM node on the (757,

(767. ATL)

(767 SJU)

Figure 1: Time line network for a very simple
airline with only one fleet (767) that serves
only two cities, Atlanta (ATL) and San Juan
(SJU). Each arrival and departure is labeled
with a time (24-hour clock).

ATL) time line and ending at the 8:45 AM
node on the (757, BOS) time line. Hence
the time lines for a given fleet at different
cities are connected by sky arcs; however,
the time lines for different fleets are not
connected. Figure 1 provides a simple illus-
tration of how the time lines for the 767-
200 fleet at Atlanta (767, ATL) and San
Juan (767, SJU) are connected.

These (fleet, city) time lines allow us to
express conservation of flow equations for
the aircraft. For each sky arc, we define a
binary assignment variable that takes the
value one if that fleet is assigned to that
leg or the value zero otherwise. For each
ground arc, we define an integer variable
that counts the number of planes of that
type on the ground at that city during that
time interval. At each node, there is a con-
servation equation. For example, for the
6:21 AM node on the (757, ATL) time line,
the equation says

(number of 757s on the ground in ATL
just before 6:21 AM) - (number of 757s
that depart from ATL at 6:21 AM)
+ (number of 757s that arrive at ATL
at 6:21 AM) = (number of 757s on the
ground in ATL just after 6:21 AM).

The equations are presented in detail in
the appendix. For a development of a simi-
lar model, see Berge and Hopperstad
[1993] and Hane et al. [1993],

The conservation equations make up the
bulk of the model constraints. There is one
constraint for each fleet at each node,
where each flight results in two nodes.
Hence, if there are 10 fleets and 2,500
flights per day, and if every fleet could fly
every leg (which is not true due to opera-
tional limitations), and if all departure and
arrival times for a given fleet at a given
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city were unique (also not true), then we
would have 2,500 X 2 X 10 - 50,000 con-
servation equations. The actual number for
Delta's daily model is closer to 30,000.

In the Coldstart model, note that a plane
arriving at a city can be paired with any
later departure. This formulation is far
more powerful and realistic than the fleet
assignment model of Abara [1989], In the
model discussed by Abara, each feasible
turn and aircraft combination represents a
decision variable. To limit tbe size of his
model, each arrival could be paired with at
most the next five departures. Abara's for-
mulation is further limited in that it does
not allow the use of the model to be ex-
tended to other schedule-related applica-
tions like fleet planning and route develop-
ment. This ability to pair an arrival with
any later departure is very important at the
hubs, where there can be as many as 65
arrivals and 65 departures at a complex. (A
complex is a set of arrivals and departures
that connect to each other, a typical fea-
ture of the hub-and-spoke operation.)

For a given flight leg, as many as 10 dif-
ferent binary variables represent assigning
that leg to the 10 different fleets. These as-
signments are mutually exclusive, so there
is a multiple-choice constraint that says
that the sum of these zero/one variables
must be exactly one. There is one such
cover constraint for each of the 2,500 flight
legs. These cover constraints are expressed
as "special ordered sets, type 3"
[Druckerman, Silverman, and Viaropulos
1991], which considerably reduces the time
for solution of the mixed-integer program.

Certain pairs of flight legs must be as-
signed to the same fleet to provide one-
stop, through service. For example, the

plane tbat flies the 1:41 PM flight from At-
lanta to Boston, arriving at 4:10 PM, must
also fly the 5:25 PM flight from Boston to
Montreal. Thus these two legs must be as-
signed to the same fleet. This is easily
modeled by an equation of the form "X,
- XT = 0" for each fleet. The typical daily
model involves about 250 such required
hookups, giving rise to about 1,500 con-
straints.

The number of planes in each fleet,
which is tbe scarce resource in the assign-

An airline seat is the most
perishable commodity in the
world.

ment problem, is obviously limited. To
capture this in the model, we build a size
constraint for each fleet. The size con-
straint for 757s includes every 757 that is
in the air at midnight Atlanta time and
also counts the 757s on the ground at mid-
nigbt Atlanta time. To prevent getting an
infeasible solution, we allow tbe model to
use extra planes but at a very high cost.
This is preferable to getting an infeasibility
that may be hard to diagnose.

Aircraft need to be maintained at peri-
odic intervals. Short maintenance can be
done while a plane is sitting on the ground
during the day. Longer maintenance must
be performed at night. Part of the input to
the Coldstart model is a list of overnight
maintenance requirements. For example,
one 757 must have a 12-hour maintenance
check every night. For each sucb require-
ment, there is a list of maintenance bases
where the check can be done. The model
must then insure tbat a 757 is available in
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one of these maintenance bases for 12
hours. To model this, we introduced a new
set of maintenance arcs. A maintenance arc
represents a maintenance opportunity. It
begins at an evening arrival node at a
maintenance city and ends at a morning
departure node that is at least 12 hours
later {for a 12-hour check). There are sev-
eral such opportunities for each require-
ment, perhaps at several alternative cities.
There is then a multiple choice constraint
over the opportunities that correspond to
each requirement. A typical model has
about 30 maintenance requirements. An
important modeling extension to the major
maintenance requirement is that the model
can select the best city at which to perform
a certain maintenance. This feature is very
useful in analysis of the schedule and in
the planning mode.

The individual fleets are grouped into
pilot aggregates that can be flown by the
same pilots. For example, the Boeing 757,
767-200, and 767-300 fleets can all be
flown by the same pilots. For each pilot
aggregate, there is a limit on the number of
flying hours per day that can be assigned
to that set of pilots. Each assignment vari-

Airlines are capital, fuel, and
labor intensive.

able must appear in the flying hours con-
straint for the pilot aggregate that it be-
longs to, with a coefficient equal to the
number of flying hours for that leg. These
constraints, like the cover constraints, have
the effect of coupling the fleets together.

There are other crew-related considera-
tions that must be built into the model.

Just as planes need maintenance, pilots
need rest. A fleet assignment that is good
from the point of view of aircraft schedul-
ing may be very bad from the point of
view of crew scheduling. For example,
suppose there is only one 757 flight in and
out of Boise each day and no flights by any
other fleet in the same pilot aggregate. If
this flight arrives at 11:00 PM and leaves at
7:00 AM, and if the arriving crew has to
have an overnight rest break of at least
10V2 hours, then this crew will have to re-
main in Boise until 7:00 AM the day after—
32 hours after its arrival. This is very ex-
pensive in terms of crew costs. What this
means for fleet assignment is that it is not
good to have too few flights by a pilot ag-
gregate into a city, or, equivalently, to have
too many different pilot aggregates serving
a city. In particular, late arrivals should be
paired with midday departures so that a
crew can fly out of the city soon after their
rest break. To model this, we add con-
straints that result in an objective function
penalty if the number of midday depar-
tures by a pilot aggregate is less than the
number of late arrivals by the same pilot
aggregate. We also try to find "10:30 op-
portunities" (IOV2 hours are the required
time for a legal crew break). A 10:30 op-
portunity is a pairing of an evening or late
night arrival by a certain pilot aggregate
and a departure by the same aggregate at
least IOV2 hours later, such that there is at
least one plane of that aggregate on the
ground at that city for the whole 10'/? +
hour period. We find these legal crew
break opportunities by building crew time
lines [Johnson 1992] for fleet aggregates at
certain busy cities. A crew arriving at an
airport can leave from a coterminal after a
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legal break. For example, LaGuardia, John
F. Kennedy, and Newark airports form the
New York area coterminal. The crew con-
straints deal with coterminal sets of cities.

The operational restrictions are coded
into the input data for Coldstart. Certain
aircraft types are operationally constrained
from serving specific flight segments or
legs in the Delta schedule. These restric-
tions are due to aircraft performance limits,
such as takeoff or landing weight limits at
specific airports, or the range capability of
the aircraft. The range capability of the air-
craft is determined by its fuel capacity, the
altitudes of the airports being served, and
the distance between two airports. Not all
aircraft are equipped with overwater navi-
gational equipment, life rafts, and so forth;
segments requiring such equipment must
be covered by one of the specific fleet
types with this equipment.

Other restrictions coded into the input
data include airport restrictions, such as
stage 3 noise restrictions, and general arri-
val and departure curfews. Aircraft are cer-
tified to meet various noise standards, such
as stage 2 or 3, in accordance with Federal
Aviation Rules and Internationa! Civil
Aviation Organization standards. Noise
certification standards are complex; they
involve a three-point evaluation scheme
(that includes noise levels measured at
takeoff, sideline, and approach), computa-
tion of an effective perceived noise level,
and noise limits based on maximum take-
off weight. A stage 3 certified aircraft is
generally quieter than a stage 2 certified
aircraft of the same weight. Airports, such
as Seattle, Washington, and San Francisco,
restrict departures and arrivals between 11
o'clock in the evening and 6 o'clock in the

morning to aircraft meeting stage 3 noise
requirements. Orange County, California
and Washington, DCs National airports
are airports that allow only certain aircraft
types at all. Orange County, Cahfornia al-
lows only certain aircraft types, which in-
clude 737-300, 737-400, and 757, to arrive
or depart during the airport's operations;
Washington, DCs National airport allows
only 757 departures and MD88 arrivals be-
tween 10 o'clock in the evening and 6:49
in the morning.

While some noise restrictions are ac-
counted for in the input data, noise restric-
tions that are enforced as a percentage of
landings and takeoffs that can be stage 2
aircraft are modeled by a blending con-
straint. In San Diego, California, for exam-
ple, at most 25 percent of the departures
may be stage 2 aircraft.

A very serious modeling difficulty that
we overcame has to do with the arrival
time of each flight leg. Using the time-
space network to balance the flow of air-

We spent an immense amount
of effort fine tuning and
cleaning our data.

craft means that a plane that arrives at
10:50 AM, for instance, can leave on any
later departure. This implies that by arrival
time we do not mean the time when the
plane lands on the runway, or even the time
when it pulls up to the gate. What we
really mean is the time when it is ready to
go out again. The time-space network has
to be built with ready times rather than
with scheduled arrival hmes. The time that
an aircraft takes to be ready for the next
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takeoff depends on whether it is continu-
ing v̂ 'ith the same flight number or is
cbanging flight numbers. For a continuing
flight, we assume that the aircraft needs
less time to get ready for the next takeoff.
Tbe difference in these ready times is only
about five to 10 minutes, but since the
schedule is so tight, this difference makes a
big impact on the overall fleeting. The
planners, at their discretion, will son^e-
times allow an aircraft ready time to go be-
low the minimum if this means a good
connection somewhere further down in the
schedule. This tightening of the schedule
to allow for high revenue connections is a
very important modeling feature. We have
modeled this by adding fiight arcs for
missed connections with a cost propor-
tional to the time shaved from the usual
ready time. The variables corresponding to
these arcs go into the cover constraint for
that flight leg.

Another related issue that affects the ar-
rival time by a few minutes is the fact that
the different fleets fly at different speeds.
We have grouped the fleets into speed
classes (different from the grouping into
pilot aggregates). Flying time is more com-
plex than just distance divided by speed.
For example, it depends on the direction,
season, and fleet type. Another factor that
affects arrival time is the taxi time, which
varies by fleet type and airport. To model
these effects, we build the sky arcs differ-
ently depending on nominal aircraft speed
and make small adjustments to the sched-
uled arrival and departure times to avoid
violating the arrival and departure banks
of complexes at the hub cities. Tbe model
generator retimes the flights to avoid infea-
sible connections and to make feasible

connections based on the various aircraft
speeds. Hence the resulting assignment is
feasible from an operational standpoint.

Last, we modeled pilot training as a con-
straint. Pilot training requires the availabil-
ity of specific aircraft types at specific cities
for fixed periods of time daily.
The Objective Function

We have used three objective functions
in Coldstart thus far. The primary objec-
tive bas been cost minimization. In the cost
minimization objective, the goal is to mini-
mize the sum of the operating cost, spill
cost, and any applicable penalties. The op-
erating cost by fleet type is extracted from
the accounting ledger for each leg. The op-
erating cost consists of several components
that can vary by fleet type and includes
crew (pilot and flight attendant) cost, fuel
cost, landing fees, and a maintenance bur-
den. Spill cost is estimated, and depends
upon the demand for a leg, aircraft capac-
ity, recapture rate, and the revenue of the
lost passenger.

Because some constraints in the model
are not hard and fast but rather soft, we
incorporated a set of bonuses and penalties
in the objective function to help make the
solutions operationally feasible. For exam-
ple, a penalty exists for flying a wide-body
fleet into a city that is not currently served
by wide-bodies, and a bonus exists for
flying a fleet into a city that is a crew base
for its pilot aggregate.

Spill is the number of passengers not
carried because aircraft capacity is insuffi-
cient. It is the unconstrained demand lost
due to insufficient aircraft capacity on a leg
[Swan 1983, 1992a, 1992b]. Spill is caused
by the truncation of the demand distribu-
tion beyond the aircraft capacity (Figure 2).
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Figure 2: The figure shows a normally distributed passenger demand with a mean of 125 and
standard deviation of 45. The area under the demand curve to the right of a vertical line at the
capacity of an aircraft represents full flights with unsatisfied demand. Spill for a Boeing 727
with a capacity of 148 and spill for a Boeing 757 with a capacity of 182 are represented by the
areas to the right of the vertical lines at 148 and 182, respectively.

The variation in daily passenger demand
can be attributed to differences in day-of-
the-week demand, seasonality, cyclic ef-
fects, and randon:\ variation. High variabil-
ity can result in large passenger spills. Af-
ter finding the unconstrained mean and
standard deviation, one can calculate the
expected spill for any size plane.

Spilled passengers are either recaptured
on other Delta flights or lost to competi-
tors. Spill becomes a cost to an airline
when spilled passengers are lost to com-
petitors or other modes of transportation.

Using a n\arket-share model, we estimate
the percentage of spilled passengers that
are recaptured on other Delta flights on a
leg-by-leg basis. This percentage is called
the recapture rate. The loss rate for spill is
simply one less the recapture rate.

The product of the expected spill and
the loss rate for spill gives the lost spilled
passengers. We convert this into dollars by
multiplying it by an estimate of the aver-
age revenue per spilled passenger on that
leg. The resulting lost spilled revenue is the
spill cost.
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The spill cost and any applicable penal-
ties and bonuses (which are negative pen-
alties) are added to the operating cost to
estimate the total cost of operating a par-
ticular fleet type on a leg. In addition to
minimizing the cost, we have the flexibility
to run the model for other objective func-
tions. For fleet-planning purposes, we can
change the objective function to minimize
the total number of planes used to fly the
schedule. We introduced a third objective
function for route-development purposes.
If we change the objective function from
cost minimization to profit maximization,
we can modify the cover constraints to de-
termine when to add new service or drop
existing flights.
Solution Technique

The typical size of the daily Coldstart
model is about 40,000 constraints and
60,000 variables. There are roughly 20,000
binary variables (assignment of fleets to
legs and maintenance variables) and
40,000 general integer variables. Hence we
have a large mixed-integer programming
problem to solve. Our solution strategy is
to use the OBI interior point code [Lustig,
Marsten, and Shanno 1991, 1992] to solve
the problem as a linear program; fix some
or all of the binary variables that are at 1.0
in the LP solution; use these fixed variables
to reduce the size of the problem; and
solve the resulting smaller mixed-integer
problem with the OSL mixed integer pro-
gramming code [Dnickerman, Silverman,
and Viaropulos 1991].

Before attempting to solve the linear
program, OBI uses general algebraic re-
duction techniques to reduce the problem
size. First it uses the "loneiy-plus/Ionely-
minus" reduction [Lustig and Marsten

1993]. Lonely-plus works as follows. Sup-
pose we have an equation with just one
positive coefficient, several negative coeffi-
cients, and a nonnegative right-hand side.
Suppose further that all of the variables
must be nonnegative. Then the variable
with the lonely-plus can never be negative,
and we can use this equation to substitute
it out of the model. Thus the model is re-
duced by one equation and one variable.
The reductions obtained in this way in-
clude some very natural node aggregations
that could be done at the matrix-genera-
tion stage. Suppose that on a (fleet, city)
time line we find a sequence of nodes that
represent only arrivals, followed by a se-
quence of nodes that represent only depar-
tures. Then any of these arrivals could
connect to any of these departures, and all
of these nodes can be aggregated into a
single node. Figure 3 illustrates the concept
of node aggregation. This eliminates sev-
eral nodes and hence several balance equa-
tions and several integer variables for the

osoo
(a)

(b)

0646

Figure 3: Node aggregation in the time line
network; (a) shows the actual network; (b)
shows a mathematically equivalent network.
A plane that arrives at 0800 or 0815 can be
sent out on either of the 0846 departures.
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intervening ground arcs. The lonely-plus/
lonely-minus reduction also finds and
eliminates the required hookup constraints,
which are of the form, Xi — X2 = 0. This
has the effect of combining two separate
variables into a single variable. Other re-
ductions that are found do not have a sim-
ple interpretation in terms of the network.

The second model reduction used by
OBI is to eliminate dependent rows. In us-
ing the interior-point method, we do not
introduce artiflcial variables for the equal-
ity constraints. This means that there may
be dependent rows, and in fact there are
quite a few among the conservation-of-
flow constraints. We detect these by per-
forming a Gaussian reduction on the coef-
ficient matrix. Finally, OBI uses the stan-
dard sort of model reductions described by
Brearley, Mitra, and Williams [1975], The
model to be solved ends up being about
12,000 rows and 30,000 variables. (For ex-
ample, the December 1992 schedule re-
sulted in a model with 41,325 rows and
62,088 variables and was reduced to
12,811 rows and 33,475 variables.)

Computational experiments described in
Hane et al. [1993] show convincingly that
the interior-point method dominates the
simplex method for this class of problems.
For example OBI uses the interior-point
method to solve the December 1992 sched-
ule in 45 iterations, taking 43 minutes on
an IBM RS/6000 (Model 530) work sta-
tion. The OSL primal-simplex code solves
the same model in 356,854 iterations, tak-
ing 19 hours on the same work station.
OBI uses the predictor-corrector version of
the primal-dual interior-point method
[Lustig, Marsten, and Shanno 1992]. (The
OSL predictor-corrector, primal-dual bar-

rier code [Druckerman, Silverman, and
Viaropulos 1991] is very similar to OBI but
does not perform as well on the fleet as-
signment models because the OSL prepro-
cessor does not remove dependent rows
and does not do the lonely-plus/lonely-
minus reduction if the variable heing sub-
stituted out has more than one other non-
zero coefficient.)

The LP solution of the daily model typi-
cally assigns a unique fleet to about 80
percent of the flight legs, or about 2,000 of
the 2,500 legs. This leaves about 500 legs
with two or more fleets assigned at a frac-
tional level. If all of the binary variables
that are at one in the LP solution are fixed,
then the same kind of algebraic model re-
ductions discussed above will reduce the
problem down to about 4,000 rows and
6,000 variables. Near optimal solutions to
models of this size can be found within an
hour or two of branch-and-bound search
by the OSL MIP code [Druckerman,
Silverman, and Viaropulos 1991]. By near-
optimal, we mean within 0.1 percent of
the LP objective value of the full model.
Of course, the reduced problem may be in-
feasible because of the fixed variables. We
have developed heuristics to fix some but
not all of the X-variables that are at one in
the LP solution so as to prevent infeasibil-
ity. Fortunately, infeasibility is rarely a
problem when we are solving the large all-
fleet models—so rare that we have not en-
countered it. Infeasibility occurs more of-
ten when variables are fixed for two or
three fleet models, and in this case, OSL
can solve the whole problem from scratch
without help from OBI.
Implementation and Operational Impact

We developed Coldstart to take advan-

January-February 1994 113



SUBRAMANIAN ET AL.

tage of the economic analysis that had
been done for an earlier system that made
small fleeting changes to improve profit.
The earlier system, Warmstart, was essen-
tially a local swapper and would look for
interchangeable paths of two to four flights
that could be switched to improve profit.
The following example illustrates the type
of swap that the system produced (all
times are in Eastern Standard Time):
Atlanta to Birmingham 1100 1140,
Birminghan:\-Dallas/Ft. Worth

1230 1330, fleet: 72S;
Atlanta to Jackson 1100 1210,
Jackson-Dallas/Ft. Worth

1245 1330, fleet: 757.
Clearly these two paths could be inter-

changed if the end result was desirable,
because the situation before and after the
swap is identical. The rest of the schedule
can be ignored as far as this swap is con-
cerned.

While the scope of the changes that can
be made with this procedure is much
smaller and the applicability is limited, the
economic analysis is essentially the same.
The question of the cost of a particular
type of aircraft on a particular segment
must be identified and then used to im-
prove the schedule.

Delta used the Warmstart system for
over a year for fleeting decisions—and
thus the economic assumptions and fore-
casts. Once it had decided to use this anal-
ysis for fleeting decisions, the leap to ac-
cepting Coldstart recommendations was a
smaller one.

Once Delta started to use the local
swapper, its shortcomings became appar-
ent. These weaknesses spawned the effort
to generate a more global and far-reaching

fleeting system. Delta formed the opera-
tions research team initially to work on the
Coldstart model.

Once Coldstart was operational, the de-
cision to use it was very easy. The sched-
ule planners analyzed the difference be-
tween their initial schedules and the rec-
ommended Coldstart fleetings. They felt
that the solutions Coldstart produced were
clearly superior. The planners can now de-
termine analytically which flights need to
be upgraded and which downgrades will
be costly, and they can assess a schedule
once the fleeting is done. The problem
prior to Coldstart was making desirable
fleetings operationally feasible.

The economic analysis necessary to run
the fleet optimization makes estimating the
benefits fairly simple. Tbe cost of a fleeting
is determined by summing the segment
costs for the assigned fleets. The costs be-
tween fleetings can then be compared. In
the meantime, the operating departments
provide feedback on other unmodeled
costs that may be affected by the changes,
including crew, maintenance, and station
costs.

Delta has two scheduling groups which
work on each of the six to eight schedule
periods in a year. One of the groups, the
planning group, works on a schedule be-
ginning eight to nine months before it
starts and provides a tentative schedule to
the operating departments seven months
ahead of time. This schedule is used to set
staffing levels at the pilot bases and to pro-
vide a good starting solution for the cur-
rent schedules group. The other scheduling
group, the current group, starts work on
the final version of the schedule about four
months early using the planning version as
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a starting point. While the group may
make changes, they may not exceed the pi-
lot staffing levels at any of the crew bases
that were set as a result of the planning
schedule. Since they work several months
closer to the actual schedule date, the cur-
rent group can take advantage of competi-
tive changes, growing or declining mar-
kets, or other changes in strategy to refleet
to better advantage. In addition, there are
generally some changes to the actual legs
in the schedule between the time the plan-

Coldstart is the first OR
application of this magnitude
developed and implemented
inside Delta.

ning group issues a schedule and the cur-
rent group does. The available fleet count
may change also.

Both the planning and current schedul-
ing groups use the Coldstart model exten-
sively, although the planning group gener-
ally has more opportunity to make sweep-
ing changes. The current group, in addition
to having to keep within the crew base
constraints, must schedule all tbe weekend
cancellations and other exceptions to the
assumption of the repeating 24-hour cycle.
Because of the reduced lead time, the cur-
rent group generally will have a more ac-
curate demand forecast; it will call for
some refleetings from the initial schedule
from planning.

Both groups tend to use Coldstart in a
similar fashion. Initially, they include all
the fleets in a run to get a good starting so-
lution. Invariably, there are assignments
that are undesirable for one of a number

of reasons that cannot easily be captured
in the model. This first run takes from one
to three hours since it includes all 10 fleets
and 2,500 flight segments. From this solu-
tion, the schedule planners can identify the
problems and work them out individually
or in groups. They generally solve these
problems quickly as subproblems involving
from two to five fleets, often in five min-
utes or less. This tuning of the initial solu-
tion will generally continue until the dead-
line for issuing the schedule.

Coldstart has changed the basic task of a
schedule planner at Delta. While the
model performs all the schedule changes,
and very fast, the task of the planner in-
volves more analysis of these changes.
Planners spend a lot more effort in analyz-
ing the various cost numbers that are used
to drive the model. With this tool, they can
test various scenarios in a short amount of
time and choose the best one. As a result,
the flight schedule at Delta has changed
considerably since the model went into ef-
fect.

Because the old method of fleeting is no
longer used, benchmarks are not available.
While the quesfion, "how much better is
this Coldstart fleeting than what we would
have achieved manually," was important
initially; a better quesfion now is, "how
much better can a Coldstart solution be-
come?" We will always be changing the
model, and we can use an infinite number
of parameter setfings; this is the key to fu-
ture enhancement. Coldstart allows the
user to produce two different schedules us-
ing different constraints or parameters and
allows him or her to answer these types of
questions with the same comparative pro-
cedure.
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Planners can use Coldstart in a number
of vk̂ ays. Initially, they can use it to get a
fleeting that is close to the desired one.
They accomplish this by doing one or
more runs using all the fleets. Once that is
accomplished, they work on segments that
need to be refleeted because of factors that
cannot be modeled. Coldstart can be used
to solve smaller subproblems—usually the
best and fastest way to address individual
problems. For example, a planner may
wish to upgrade a flight from Atlanta to
Dallas/Fort Worth from a 76S with 254
seats to an LIO with 302 seats. The plan-
ner can pull the 76S and LIO fleets out as
if they were a separate airline, target the
desired upgrade and see what refleetings
are necessary to accomplish the change.
This can often be done in just a minute or
so, depending on the size of the subprob-
lem. A desirable solution to a targeted
flight can be accepted and put into the
schedule base if desired. Because the sys-
tem is so flexible, it can be used to solve
small fast subproblems and thus accom-
plish any number of desired goals.

The schedules department sends out
schedule proposals to the operating de-
partments and then gets responses specify-
ing problems and requesting changes. It
takes these responses and revises the
schedule to best address the problems and
the needs of the operating departments.
The targeted subproblem approach with
minimal changes works well in the late
stages of the schedule development pro-
cess. Once schedules has issued schedule
proposals, it must keep the number of
changes before the schedule is finalized to
a minimum. This keeps the number of re-
fleetings small while accomplishing the

necessary changes.
Extensions

The Coldstart model has grown in three
different directions beyond its original pur-
pose. These are fleet planning, route devel-
opment, and transition planning. Imple-
menting these extensions was easy because
of the way the initial model was built.
Fleet planning is a natural extension of
fleet assignment. Instead of treating the
fleet sizes as fixed, it is easy to model the
possibilities of acquiring additional aircraft
or retiring existing aircraft. In addition to
operating cost, some measure of the own-
ership cost must be included in the model.
The success of the model as a fleet plan-
ning tool depends mainly on the objective
cost figures. At Delta we have spent an im-
mense amount of effort fine tuning and
cleaning our data for these runs.

If the objective of the model is changed
from cost minimization to profit maximiza-
tion, then the optimizer can be allowed to
choose which legs to fly, rather than being
required to fly all legs. This means that the
model can be used for developing routes
by considering the addition of new legs or
the deletion of existing legs.

A transition problem arises whenever a
schedule change occurs, major or minor.
For example, the schedules changed on
Sunday, April 4, 1993 when daylight sav-
ing time began. On the night of April 3,
the planes were al! in their correct posi-
tions for continuing the winter schedule.
But these were not the correct positions for
beginning the spring schedule! One solu-
tion would be to ferry planes, empty, in
the dead of night, to their correct positions.
Instead, Delta alters the assignment of
fleets to legs during the last day of the old
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schedule and the first day of the new
schedule, sometimes having to cancel a
few flights. This is a very time-consuming,
manual planning job. We have developed
and implemented a separate version of the
Coldstart model to solve this problem. The
objective function tries to minimize the
number of fleeting changes required, with
preference given to changes involving the
same pilot aggregate or seating capacity.

The model has been built so that the
user can select any subset of constraints
that are applicable for his or her run. We
bave taken extensive effort to ensure that
for a given run the model is never infeasi-
ble. This includes infeasibility due to fleet
size, turn times, maintenance require-
ments, noise constraints, and pilot block
hours.
Financial Impact of the Coldstart Project

When we began the Coldstart project in
September 1991, we were not sure that we
would be able to model and solve such a
very large and complex system. The fol-
lowing factors were essential to the success
of this project. First, we had someone with
experience in the Delta fleet scheduling de-
partment working full time as part of the
development team. He made sure that the
model produced operationally feasible so-
lutions. Second was the effort devoted to
modeling the details of the system, particu-
larly the turn time versus through time is-
sue, including all of the many complica-
tions surrounding almost missed connec-
tions and aircraft speed. Third was state-
of-the-art algorithms and software. OBI
and OSL are both cutting-edge codes, and
OBI was improved to meet the computa-
tional challenge posed by these models. Fi-
nally, the availability of powerful and in-

expensive work stations put the equivalent
of three completely dedicated mainframes
at our disposal for development and
testing.

Since the September 11, 1992 schedule,
which was the first schedule that used
Coldstart extensively, the model has been
used for all of Delta's schedules. The re-
fleetings from the September 11, 1992
schedule saved an estimated $55,000 per
day over the schedule that would have
been used. The planning group first used
Coldstart for the December 15, 1992
schedule and obtained an estimated sav-
ings of more than $100,000 per day. All
other schedules have been worked exclu-
sively with Coldstart, which eliminates the
benchmark comparison to the schedule as
it would have been developed under the
previous methodology. However, with ad-
ditional experience and confidence. Delta
has used the model much more heavily in
developing subsequent schedules. The sav-
ings in the June 1, 1993 to August 31,
1993 schedule have been estimated at
$220,000 per day. The savings from the
model have increased from schedule to
schedule as the planners gain more confi-
dence and accept more and more of the
model's recommendations. The success of
this process has been mainly due to the
willingness at Delta to understand and im-
plement the model, sometimes even
changing the way operations have tradi-
tionally been done at Delta.

A substantial percentage of the cost sav-
ings results from reduced direct operating
cost. This amount is much more easily
tracked than the reduced spilled revenue.
It is a straightforward process to estimate
the direct operating cost of two fleetings
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over the same set of legs. Even here, there

are some pitfalls. For example, a fleeting

that allows you to save pilot costs and re-

duce the pilot head count by 100 will not

actually save that money in the short term

unless you lay off pilots, which Delta has

not done. In the long run, the savings will

be realized as attrition occurs or as Delta is

able to increase its level of service without

adding pilots.

Even when a schedule has been flown, it

is very difficult to estimate how much

more or less revenue would have been

generated with a different fleeting. There is

no record of spill or recapture even after it

has occurred. Estimating this part of the

objective function from four to eight

months out is difficult. In addition to esti-

mating the unconstrained demand, one

must estimate the unconstrained variance

for each flight. Since most flights have

truncation in the historical data, statistical

analysis must be used to estimate these pa-

rameters. We have used the techniques de-

scribed by Swan [1983, 1992a, 1992b] in

conjunction with techniques developed by

Delta to estimate these key values. To this

point. Delta has been pleased with both

the cost savings and the revenue genera-

tion from the model.

Coldstart is the first operations research

application of this magnitude that has

been developed and implemented inside

Delta Air Lines. Its success ensures that

Delta will be an eager user of operations

research techniques in the future.

APPENDIX
We present here an algebraic formula-

tion of the basic model, which does not in-
clude maintenance, pilot training, pilot
hours, crew breakout, crew 10:30 rest, and
noise constraints.

The Basic Fleet Assignment Model
Sets:
CITY^—a set of cities, indexed by /,
FLEET—a set of aircraft types, indexed by

k,
LEG—a set of flight legs, indexed by /, and
TIME—a set of times, {OOOO, 0001, . . . ,

2359}, indexed by (.
Parameters:
cost(k,t) = cost if an aircraft of fleet k flies

leg / ( x if fleet k cannot fly leg /),
turi}{k,i) ^ turn time for fleet k in city i; the

minimum time required between the ar-
rival and subsequent departure of the
same aircraft,

size{k) = number of aircraft available in
fleet k,

origQ) = origin city of leg /, an element of
CITY,

desl{l) = destination city of leg /, an ele-
ment of CITY,

depart{l) ^ departure time of leg /, an ele-
ment of TIME, and

arrive{l) ^ arrival time of leg /, an element
of TIME.

Derived Sets:
NODES(iO - {f 6 TIMEU - depart{l) for

some / E LEG such that orig{/) ^ /, or /
^ arrive{l)+turn{k,i) for some / G LEG
such that desl{l) = \].

NODES(fc,0 is the set of times when an ar-
rival or departure of an aircraft of type k
may happen at city (. For any ( G
NODES(fc,i), we use 1+ to denote the next
time, and t- to denote the previous time,
with the circular assumption that 2359+ -
OOOO and OOOO- = 2359.
lNTO{k,iJ) = {/ G LUG\dest{l) - /, ar-

rive{l)+turn{k,i) - t], Vk G FLEET, i G
CITY, and t G NODES{/r,/).

OUTOF(^,(,0 - {/ G LEG I ong{/) = i, de-
part{l)=t}yk e FLEET, i G CITY, and t

GNODES(A,()-
count—air{k) = {{kj)\cost{kj) < x̂  and ar-

rive{l)+turn(K desl{l)) < depart{l)]
count-ground{k) - {(fc,/,OU e NODES(jt,/)

and t+ < t]
cou?it^air{k) captures the set of legs where
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an aircraft of fleet k may be in the air at
midnight.

count_ground{k) captures the set of cities
where an aircraft of fleet k may be sit-
ting on the ground at midnight.

HOOK c LEG X LEG
(/,,/.) e HOOK means that dest{U)

^ ot'tgOi) and that the same fleet must be
chosen for both /i and I2.

Variables:
X;; = 1 if fleet k is assigned to leg /;

= 0 otherwise.
V^ e FLEET and I G LEG, such that
cost{k,l) < oj.

Vt,, = number of aircraft of fleet k on the
ground at city i from time t to time
f+.
VA e FLEET, ( e CITY, and i
e NODES(A:,/).

Zi = number of aircraft of fleet k that are
used.

Constraints:
BALANCE{ii:,U):

2 X,, - 2 X,,

- 0,

"ik G FLEET, i G CITY,

and i G NODES(fc,/).

COVER(/):

2 Xu - 1, V/GLEG.

SIZE(fc):

- z , - 0 ,

VJt G FLEET.

0 < Z, < s;2

Xu, - X;,, - 0, V/r G FLEET,

(/,,/2) E HOOK.

Objective:

Minimize COST - cost{Jt,/)*Xi
kEFLEET.leLEG

Additional constraints can be added for
maintenance requirements, crew consider-
ations, pilot hours, pilot training, noise re-
strictions, and others.
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